| Variables |
$x_1$, $y_1$, $z_{3,4}$ |
$x_1$, $y_1$, $z_{3,4}$ |
| Square |
$a^2$, $x^y$, $2^{n-1}$ |
$a^2$, $$x^y$, $2^{n-1}$ |
| Square Root |
$\sqrt{9}$, $\sqrt{x}$, $\sqrt[n]{x}$ |
$\sqrt{9}$, $\sqrt{x}$, $\sqrt[n]{x}$ |
| Logarithm |
$\log{}x$, $\log_{2}x$ |
$\log{}x$, $\log_{2}x$ |
| Fraction |
$\frac{1}{2}$, $\left(-\frac{1}{2}\right)^n$ |
$\frac{1}{2}$, $\left(-\frac{1}{2}\right)^n$ |
| Infinity |
$\infty$ |
$\infty$ |
| Absolute Value |
$\vert{x}\vert$, $\vert\frac{x}{2}\vert$, $\lfloor{x}\rfloor$, $\lceil{x}\rceil$ |
$\vert{x}\vert$, $\vert\frac{x}{2}\vert$, $\lfloor{x}\rfloor$, $\lceil{x}\rceil$ |
| Arithmetic Operation |
$2\times 3$, $6\div 3$ |
$2\times 3$, $6\div 3$ |
| Factorial |
$n!$ |
$n!$ |
| Trigonometric Functions |
$\sin\theta$, $\cos\theta$, $\tan\theta$ |
$\sin\theta$, $$\cos\theta$, $\tan\theta$ |
| Greater or Less |
$a\gt b$, $a\geq b$, $a\lt b$, $a\leq b$ |
$a\gt b$, $a\geq b$, $a\lt b$, $a\leq b$ |
| Equation |
$a=b$, $a\neq b$, $a\approx b$ |
$a=b$, $a\neq b$, $a\approx b$ |
| Times Dot |
$a\cdot b=ab$ |
$a\cdot b=ab$ |
| Divide Fraction |
$a/b=\frac{a}{b}$ |
$a/b=\frac{a}{b}$ |
| Trinomial Equation |
$a^2 + b^2 = c^2$ |
$a^2 + b^2 = c^2$ |
| Matrix Parentheses |
\(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\) |
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ |
| Matrix Brackets |
\(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\) |
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$ |
| Matrix Equation |
\(\begin{vmatrix} a & b \\ c & d \end{vmatrix}=ad-bc\) |
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}=ad-bc$$ |
| Set |
$x\in A$, $A\ni x$, $x\notin A$ |
$x\in A$, $A\ni x$, $x\notin A$ |
| Subset |
$A\subset B$, $A\subseteq B$, $A \not \subset B$ |
$A\subset B$, $A\subseteq B$, $A \not \subset B$ |
| Intersection & Union |
$A\cap B$, $A\cup B$, $\overline{A}$ |
$A\cap B$, $A\cup B$, $\overline{A}$ |
| Quadratic formula |
$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $ |
$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $ |
| Binomial |
$\sqrt{3x-1}+(1+x)^2$ |
$\sqrt{3x-1}+(1+x)^2$ |
| Differentiation |
$f’$, $f^{(n)}$, $D_x f$ |
$f'$, $f^{(n)}$, $D_x f$ |
| Integral |
$\int_0^1 f(x) dx$ |
$\int_0^1 f(x) dx$ |
| Integral Large |
$\displaystyle \int_{-\infty }^{\infty}f(x)dx$ |
$\displaystyle \int_{-\infty }^{\infty}f(x)dx$ |
| Max Sample |
\(\max(a,b)=\begin{cases}a&(a\geqq b)\\b&(a\lt b)\end{cases}\) |
$$\max(a,b)=\begin{cases}a&(a\geqq b)\\b&(a\lt b)\end{cases}$$ |